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Abstract 

 
Three Geostationary Operational Environmental Satellite (GOES) R 
transponders (services) required analysis and measurements to develop an 
accurate link budget.   These are a) Search and Rescue transponder which 
suffers from power robbing due to thermal uplink noise, b) the Data 
Collection Platform Report which suffers from degradation due to NPR 
(Noise Power Ratio), and c) GOES Rebroadcast transponder which uses a 
dual circular downlink L band for which there was no depolarization data.  
The first two services required development of extended link budget to 
analytically calculate the impact of these degradations which are shown to 
have a significant impact on the link budget.  The third service required 
measurements of atmospheric L band CP depolarization as there were no 
known previous measurements and results are reported here. 

 
 

Introduction 
 
The three transponders on the GOES R satellite that required additional effort to produce a viable link budget are 
discussed here.  The Search and Rescue (SAR) transponder on the GOES R satellite will have a 100 kHz bandwidth 
transponder and nominally ten 32 dBmi, 400 bps uplinks.  Power robbing due to thermal noise is a well known 
phenomenon, but usually has a small arbitrary allocation in the link budget.   However the SAR bandwidth is large 
compared to the occupied bandwidth and the very low, battery powered uplink results in a large amount of the HPA 
power being used to amplify noise.  The C/No is shown to be reduced by over 7 dB due to power lost amplifying 
noise.   
 
The Data Collection Platform Report (DCPR) has 250 FDMA/TDMA equivalent simultaneous carriers.  Even with a 
relatively good noise power ratio (NPR) of 20 dB, the 250 carrier DCPR transponder suffers almost 1 dB of loss due 
to NPR.   The trade-off of NPR vs. the RF power to maintain a fixed link margin is explored since HPA NPR can be 
improved at the cost of loss of RF power due to higher output power back-off.  A NPR sweat spot of 17 to 22 dB is 
found for this specific link. 
 
The GOES Rebroadcast (GRB) has an X band dual polarization uplink and a  dual polarization downlink at L band.  
The treatment of depolarization effects is very different for the two cases.  In addition, there were no known 
measurements of atmospheric depolarization effects at L band.  To develop requirements for this link, depolarization 
measurements were made and a link budget developed which incorporated the differences in environmental 
depolarization in the uplink and downlink. 
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I.  Noise Power Robbing-SAR Transponder 

 
Power robbing can significantly impact the link budget for very low power uplinks and a relatively wide low 
occupied bandwidth.  The SAR transponder of the GOES R satellite will have  is such a system with a few 32 dBm, 
400 kbps uplinks from small battery powered beacons transmitters and a 100 kHz bandwidth.  The relatively wide 
bandwidth is required because the beacons are activated as needed in emergencies and it is necessary to avoid 
collisions of uplinks.  The uplink power is further reduced by a 4.1 dB polarization loss.    
 
To calculate the power lost to noise, we use the usual definitions of noise/Hz is No, the value of  the noise over the 
HPA bandwidth is N, the  total carrier power is Co, the carrier power after power lost to noise is C. 
 
Let x=C/N; N=C/x 
 
Co=C+N = C(1+1/x) 
 
C/Co =  1/(1+1/x) = 1/(1 + N/C) 
 
For the GOES link, the energy lost to amplifying noise on the Search and Rescue (SAR) link is substantial.  The 
UHF uplinks (406.05 MHz) low power uplinks have a minimum polarization loss of 4.1 dB.  Using estimated 
characteristics and assuming 10 simultaneous uplinks, amplifying the noise decreases the power  available for the 
signals by 7.6 dB.   
 
 
Total EIRP (dBm) 51.08
Carrier power robbing due to noise (dB) -7.59
Power sharing with other carriers -10.00
NET EOC EIRP/carrier (dBm) 33.49  
Figure 1 Power lost to noise in the SAR transponder 

 
 

II.  Noise Power Ratio – DCPR Transponder 
 
The GOES-R DCPR transponder is designed for 250 (equivalent) simultaneous shared circuits in an FDMA/TDMA 
configuration.  A significant source of degradation of this link is due to the Noise Power Ratio (NPR).  A satellite 
transponder, or other amplifier, is loaded with a white noise input over its full operating bandwidth, except for small 
test channel or notch, the input noise is filtered out. The total input power must be large enough to drive the output 
amplifier to its rated operating power level. The output signal is examined and the noise power measured within the 
notch and, generally, at several frequencies elsewhere in the transponder passband. Each noise power measurement 
must be made using the same bandwidth, which must therefore be narrow enough to provide an accurate 
measurement of the depth of the notch. The several high power measurements are averaged and the result is 
compared to the power level measured within the notch, thus producing the ratio of these two noise powers, the 
NPR, which is expressed in dB. 
 
NPR test may be thought of as the limiting case when an infinite number of infinitely narrow signals (noise) are 
passed through the limited bandwidth of the transponder. Some fraction of that noise is translated into the notch due 
to intermodulation products from the imperfect linearity of the amplifiers through which the noise is passed. This is 
equivalent to the sum of all intermodulation products, between all the possible combinations of signals that produce 
a product, third, fifth, seventh, etc. that will fall into the narrow band of that slot.  
 
When the actual number of signals to be carried by a transponder is large, the NPR test will provide a more realistic 
measurement of the non-linearity effects due than can be produced by a simple carrier to third order intermodulation 
product (C/3IM) since the effects of all possible combinations of input signals and all their intermodulation products 
are captured in this one set of measurements under a single set of test conditions.   
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An example of an NPR input and output spectral display is shown in Figure 2, below, created using MatLab. In this 
example the input spectrum and the output spectrum is shown. The NPR measurement result is shown in the central 
notch at approximately 12 dB. Note that the notch depth in the input signal is approximately 16 dB below the notch 
depth in the output signal, which shows that the noise level in the notch is almost completely due to the channel non-
linearity with only about 0.1 dB due to the input noise in the notch bandwidth. 
 
For an actual NPR test, the bandwidth of the notch would usually be a much smaller percentage of the total occupied 
bandwidth than is shown here, where the notch width was exaggerated to more clearly show the input and output 
levels. Unless the notch bandwidth is a negligibly small fraction of the total bandwidth, e.g. one percent or less, the 
NPR level in the notch will show a slope down and away from the edges of the high-noise bands, as is shown at the 
high and low frequency ends of this display. 
 
The raw NPR measurement is not a parameter that can be directly used in the link analysis, but can be converted 
into a ratio that can be included. i.e. the ratio of carrier power, C, to the NPR per hertz, NPR0. This C/NPR0 is then 
easily combined with the usual link parameter, C/N0 for the up and down parts of the total link budget. 

 
 
Figure 2 Example Input (blue, lower trace) and Output Spectral Display (red, upper trace). 
 
The NPR is valid for any measuring bandwidth, provided it is the same in the notch and for the high power 
measurements and is able to adequately reject the adjacent high power when it is tuned within the notch. Therefore 
that ratio also applies to a 1 Hz bandwidth. However, if there are N signals to be transmitted in a bandwidth B Hz, 
all at the same or average level, then the power in each carrier, C, is greater than the power in 1 Hz of high level 

Signal into HPA 

NPR 
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noise by a factor of B/N, i.e. the power in each carrier is equal to the sum of the noise power over that fraction of the 
total bandwidth allocated to that carrier. Therefore: 
 
 C/NPR0 = NPR + 10*Log (B/N) dB/Hz 
 
For carriers that are not at the average level, the C/NPR0 must be adjusted by the same amount that each signal level 
differs from the average; i.e. if a given signal is 2 dB less than average, the NPR is 2 dB less than was calculated for 
the average signal level. The NPR can therefore be incorporated into the link calculations for any signal at any level. 
 
The NPR parameter is particularly appropriate for the DCPR transponder on the GOES satellites, and incorporating 
the NPR results into the link budget is considered necessary to accurately model the effects of the transponder on the 
end-to-end performance of individual signals. The details of how the individual transmitters are allocated by NOAA 
to specific channels within the 400 kHz DCPR transponder bandwidth are not relevant to this paper. However, 
NOAA has defined the maximum loading is equivalent to 250 simultaneous signals at an average uplink transmit 
EIRP level of 41 dBmi and all channels are defined with a nominal 750 Hz center-to-center spacing and almost all 
active channels are grouped together in the lower 300 kHz of the band. A typical transmission is expected to take 
about 10 seconds, but as there will be 30 to 50 thousand Data Collection Platforms, transmitting on average 24 times 
per day, the defined maximum loading will be closely approached during the most popular use periods. 
 
Almost all of these signals will be 8-PSK modulated at 300 bps with rate 2/3 Trellis coding and therefore will 
occupy a null-to-null bandwidth of 300 Hz. In actual operation, some signals passing through the transponder will be 
100 bps BPSK and some will be 1200 bps 8-PSK, but they are only a small percentage of the total. These 
differences are only significant when it is necessary to calculate the performance of one of these unusual signals; 
they were included in the calculation of the above number of signals and average power. 
 
The DCPR transponders on the GOES-R series satellites will have a passband of 400 kHz and a specified NPR or 20 
dB. The minimum uplink EIRP required to produce an acceptable EB/N0 is 37 dBmi, which applies to a 300 bps 
signal and the maximum is 47 dBmi which is only permitted for a 1200 bps signal. 
 
When we insert the appropriate values in the previous equation, we get: 
 
 C/NPR0 = 20 + 10*Log (400000/250) dB/Hz 
    = 52.04 dB/Hz 
 
As this value applies to an average uplink, the C/NPR0 for a minimum uplink will be 4 dB less, 48.04 dB/Hz and for 
a maximum uplink it will be 6 dB greater, 58.04 dB/Hz. 
 
The parameter C/NPR0 can be added to the C/N0 values typically derived for the up and down parts of a satellite 
link. Indeed, C/NPR0 can be added to either the up or down C/N0 value, or all three may be added together in one 
calculation, because the equation for adding non-coherent powers is associative. 
 
As an example, if the uplink EIRP is 37 dBmi, a typical DCPR link calculation could produce an uplink plus 
downlink C/N0 of 40.92 dB/Hz. When the C/NPR0 of 48.04 dB/Hz is added, the overall downlink C/(N0+NPR0) is 
40.15 dB/Hz. 
 
This is illustrated Figure 3.  For this transponder, the loss of power due to noise power robbing is negligible, about 
0.16 dB. 
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Figure 3 Reduction in C/N due to NPR degradation 
 
 

C/No and Required Power vs. NPR

0

20

40

60

80

100

120

140

160

180

200

12 17 22 27 32 37
NPR

W
at

ts
 r

eq
ui

re
d 

fo
r 

13
 E

b/
N

o

37.5

38

38.5

39

39.5

40

40.5

41

41.5

42

42.5

C/
N

o 
at

 c
oa

ns
ta

nt
 P

ow
er

Power requried for
Eb/No=13db
C/No

 
Figure 4 Impact of NPR on C/No at constant power and required downlink power to maintain constant C/No. 
 
 
The overall results of varying the NPR on the end-to-end link design are shown in two different ways in Figure 4. 
First, if the NPR is reduced from 40 dB, the curve labeled C/N0, (where N0 includes the impact of NPR0) shows 
there is about 0.1 dB degradation when the NPR is near 30 dB and about 1 dB degradation when the NPR is near 20 
dB. The degradation starts to increase more rapidly as the NPR is reduced below 20 dB. Alternately the impact of 
NPR can be shown as the RF power necessary to maintain a constant EB/N0 of 13 dB as the NPR decreases, as also 
shown in Figure 4. (This applies to a specific set of assumed link parameters where the required EB/N0 is 11 dB.) 
The optimum trade-off depends upon the characteristics of the HPA, but should be between 17 and 22 dB for this 
link where the required Eb/No is 13 dB. 
 
 

III.  Polarization Degradations – GOES Rebroadcast (GRB) transponder 
 

The GRB X band uplink will be from a 16 meter antenna at the NOAA Command and Data Acquisition Station at 
Wallops Is.  The L band downlink is to earth stations over the hemisphere.  The atmospheric depolarization and the 
type of receive stations resulted in the selection of linear polarization for the uplink and circular polarization for the 
downlink.  The calculation of depolarization effects is substantially different for the two cases.  Atmospheric 
circular depolarization has not been measured at L band and measurements had to be made to obtain values to use in 
the link budget.  The initial results are presented in this section. 
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For dual linear polarization, alignment of the ground antenna to match the satellite antenna is accomplished by 
rotating the ground antenna polarization until the cross polarized signal is minimized.  In clear weather this will 
provide polarization isolation equal to the satellite antenna cross polarization discrimination or the ground antenna 
cross polarization discrimination which ever is worse. For the link budget calculation, the worst case polarization 
discrimination of the ground or satellite antenna and the atmospheric depolarization should be used.  Since NOAA 
has no control over the receive stations it can not assume that the receive antenna will be rotated to minimize cross 
polarization.  Since rotating the feed minimizes the cross polarization component due to the antennas, the worst 
uplink contributor is expected to be due to the atmosphere and be better than 25 dB so this value is used to calculate 
the degradation to the uplink carrier-to-noise.   

Dual circular polarization was selected for the GRB L band downlink for two reasons.  First, the ability to rotate the 
antenna polarization is not commonly provided and if it were, NOAA cannot assume the ground receive stations  
would take advantage of it. Therefore the antenna cross polarization cannot be minimized by aligning the transmit 
and receive polarizations.  Second, circular polarization suffers less atmospheric depolarization than linear 
polarization at L- band (the opposite is true at X band).  At L band, Faraday rotation (the effects through the  
ionosphere which are sun dependent) can rotate the linearly polarized signal as much as 16 to 20 degrees making it 
impractical for dual polarization frequency reuse.  For circular polarization, the worst case polarization isolation 
occurs when the cross polarization discrimination from all the contributing sources (transmit antenna, receive 
antenna, and atmospheric depolarization) combine destructively. The equivalent worst case isolation is found by 
adding the voltages from the three downlink contributors to cross polarization; the transmit cross polarization, 
atmospheric contributions, and receive antenna cross polarization.  Assuming that the energy lost to the interfering 
polarization is small so that the carrier power is fairly constant: 

(Isol)down = -20*LOG[10^(-ITx /20)+10^(-IRx /20)+10^(-(Patmos /20)] 

Where ITx is the spacecraft transmit isolation, IRx the ground receive isolation, Patmso the atmospheric 
depolarization, all in dB. 

Then the effect on the carrier to noise can be found 

C/No = [1/(C/No) + 1/C/(ITx) + 1/(C/IRx) + 1/(Isol)down/BR]-1 

where BR is the data bit rate.  All values must be linear, not 
logarithmic. 
 
Unfortunately, no current geosynchronous satellites are 
using dual polarization at L-band, so the weather effects are 
generally unknown below 4 GHz. Another problem involves 
Faraday rotation through the atmosphere.  Faraday rotation, 
the effects of the Ionosphere, is much worse at L-band than 
at 4 GHz and this causes linear signals to rotate in 
orientation. Using dual circular polarization at L-band for 
the GRB downlink will solve that problem. The circularly 
polarized ellipse vectors for the orthogonally polarized 
right-hand circular polarization (RCP) and left-hand circular 
polarization (LCP) may rotate with respect to each other but 
if the axial ratios are sufficiently good the polarization 
discrimination degradation will be acceptable.  

 
To verify that the degradation is acceptable using dual circularly polarized signals at L-band, a two part 
measurement program was initiated. In the Lab receiver testing demonstrated that when using QPSK modulation 
and LDPC coding, an Eb/No of 6.5 dB (which includes implementation loss)  is required.  This link will tolerate 12 
dB of polarization isolation and maintain the required 2.5 dB margin. The second measurement program involved 
monitoring a satellite transmitted downlink RCP signal in both the RHC and LHC polarizations of a single CP 
signal. Comparison of received RCP/LCP signal power levels, relative to existing weather conditions provided 

Figure 5   7.2m Antenna with new rotating CP 
feed with 0.2 dB axial ratio 
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information on the polarization isolation that could be achieved. A new dual polarized feed with excellent axial ratio 
and the capability to rotate was designed, fabricated, tested, and installed in an available 7.2m antenna at Wallops 
for carrying out the monitoring phase (Figure 5). 
 
The Search and Rescue (SAR) RHCP signal transmitting at 1544.5 KHz from the GOES 11 satellite located at 135° 
West longitude was used as a stable source. This signal was chosen for its excellent axial ratio of 0.41 dB (32.5 dB 
cross polar discrimination) and its 15° look angle with a long slant path through the atmosphere providing 
opportunities to measure numerous bad weather events. The system cross polarization isolation in good weather was 
measured by rotating the feed though more than 180° and recording the variation in cross polarization level received 
in the LHCP port. By using the maximum (40 dB) and the minimum (29 dB) levels during the rotation as the 
polarization ellipses combine in and out of phase it is possible to calculate the axial ratio/cross polar discrimination 
of the satellite antenna (0.41 dB/ 32.5 dB) and the 7.2m ground antenna (0.22 dB/ 38 dB).  The feed was rotated for 
maximum cross polarization isolation during monitoring to provide the best sensitivity for measuring the effects of 
the atmosphere. A computer based automated measurement was developed to record the data. Using data from 
Doppler weather radar available from National Mosaic and Quantitative Precipitation Initiative (NMQ), the 
magnitude of atmospheric rain in the link path was determined. Many rain events were recorded and sample plots of 
the results are shown in Figure 6 which shows that the isolation varies some even during good weather at the 37 to 
43 dB down level and follow a daily cycle as shown by the orange curve which is the average level for the month of 
March. During one of the most sever rain events recorded to date the rain rate exceeded the 99.99% (53 minutes per 

year) worst case annual rate of 45.7 mm/hour for Wallops, VA. The cross polarization isolation degraded to 25 dB 
and improved to 45 dB as a direct result of the atmospheric rain. To be conservative, the worst case expected 
isolation was picked to be 22 dB for the L-band downlink time correlated with the measured system isolation. 
Monitoring started in October 2007 and for GOES-R. The satellite antenna was specified at 0.55 dB axial ratio (30 
dB XPD) and the numerous ground antenna were specified at 0.78 dB axial ratio (27 dB XPD). Combining these 
values using the equations above the worst case expected polarization isolation will be 16.2 dB, sufficient to 
maintain the required margin. 

Figure 6  Measured cross polarization isolation before and during a very strong rain event and showing rain 
rate and a monthoy average.   
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The required Eb/No with coding is about 4.5 
dB and an additional link margin of 2.5 dB is 
specified.  The spacecraft RF power required 
under clear sky conditions and assuming a 2.7 
BOL margin, and assuming various 
transponder values is about 115 W.  If there is 
an atmospheric depolarization of 22 dB, the 
required RF power increases to 145 W using 
the parameters previously given.  More 
generally, the required downlink RF power 
was plotted in Figure 7 as a function of the 
spacecraft antenna isolation.   A sample link 
budget showing the up, down, and combined 
C/No (which includes interference) is shown 
in Figure 8 which shows the downlink link 
degradation of about 1.3 dB due to 
polarization degradation. 
 
 
 
 

 
 
Figure 7  Power required to maintain link margin vs. spacecraft polarization isolation 
 

 
Figure 8 GRB C/(No+I) 
 

IV.  Conclusions 
 

Link budgets usually have some values which are estimated, not calculated.  This is usually adequate for most 
purposes but three transponders on the GOES satellite required additional work to develop a viable link budget.  We 
have derived exact equations to calculate the impairments due to NPR and to noise power robbing and found that the 
calculated values result in significant corrections to the GOES R satellite link budget.  The use of dual polarized L 
band downlinks required new measurements of depolarization in that frequency band and very different treatment of 
the uplink and downlink impairments.   

Required Power vs. Antenna Isolation
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